What is a skew-symmetric matrix?
A skew-symmetric matrix is a matrix representation of the vector cross product.
Let’s consider two 3D vectors:
\[\vec{v}_1 = (a_1, a_2, a_3) \quad \text{and} \quad \vec{v}_2 = (b_1, b_2, b_3)\]The cross product (which results in a vector perpendicular to both vectors) is defined as:
\[\vec{v}_1 \times \vec{v}_2 = (a_2 b_3 - a_3 b_2, \quad a_3 b_1 - a_1 b_3, \quad a_1 b_2 - a_2 b_1)\]Skew-symmetric matrix form
The brilliant minds before us discovered a matrix form to encode this operation, called the skew-symmetric matrix:
\[[w]_\times = \begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix}\]Using the vector
\[\vec{v}_2 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}\]the matrix multiplication
\[[w]_\times \cdot \vec{v}_2 = \begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} - w_z b_2 + w_y b_3 \\ w_z b_1 - w_x b_3 \\ - w_y b_1 + w_x b_2 \end{bmatrix}\]Example substitution
Substitute \(\vec{w} = (0, 1, 0)\):
\[[w]_\times \cdot \vec{v}_2 = \begin{bmatrix} b_3 \\ 0 \\ - b_1 \end{bmatrix}\]ay, voila! This matches the vector cross product result:
\[\vec{w} \times \vec{v}_2 = (b_3, \; 0, \; -b_1)\]So,
\[\mathbf{A}^T = \mathbf{B}\]where \(\mathbf{A}\) is the matrix result and \(\mathbf{B}\) the vector notation.
Notes on dimensions:
- Vector × Vector: Both must be 3D vectors (shape \(1 \times 3\) or \(3 \times 1\)) for cross product.
- Matrix × Vector: Number of matrix columns must equal vector rows (e.g., \(3 \times 3\) matrix times \(3 \times 1\) vector).